import { removeObjectEmptyFields } from "https://deno.land/x/windmill_helpers@v1.1.1/mod.ts";
import { PineconeClient } from "npm:@pinecone-database/pinecone";
import { QueryOperationRequest } from "npm:@pinecone-database/pinecone/0.0.12/dist/pinecone-generated-ts-fetch/index.js";
/**
*
* @param topK The number of results to return for each query.
*
* @param vector _(Conditionally Optional)_ The query vector. This should be the same length as the dimension
* of the index being queried.
* **Each query request can contain only one of the parameters "id" or "vector".**
*
* @param id _(Conditionally Optional)_ The unique ID of the vector to be used as a query vector.
* **Each query request can contain only one of the parameters "vector" or "id".**
*
* @param namespace _(Optional)_ The namespace to query.
*
* @param includeValues _(Optional)_ Indicates whether vector values are included in the response.
* Defaults to `false`.
*
* @param includeMetadata _(Optional)_ Indicates whether metadata is included in the response as well as the ids.
* Defaults to `false`.
*
* @param filter _(Optional)_ The filter to apply. You can use vector metadata to limit your search.
* See https://www.pinecone.io/docs/metadata-filtering/.
*/
type Pinecone = {
apiKey: string;
environment: string;
};
export async function main(
auth: Pinecone,
index_name: string,
topK: number,
vector?: number[],
id?: string,
namespace?: string,
include_values?: boolean,
include_metadata?: boolean,
filter?: object,
raw?: boolean,
) {
const client = new PineconeClient();
await client.init(auth);
const index = client.Index(index_name);
const queryRequest: QueryOperationRequest = removeObjectEmptyFields({
topK,
vector,
id,
namespace,
includeValues: include_values,
includeMetadata: include_metadata,
filter,
});
return await index[raw ? "queryRaw" : "query"]({ queryRequest });
}
Submitted by admin 521 days ago
import { removeObjectEmptyFields } from "https://deno.land/x/windmill_helpers@v1.1.1/mod.ts";
import { PineconeClient } from "npm:@pinecone-database/pinecone";
import { QueryOperationRequest } from "npm:@pinecone-database/pinecone/0.0.12/dist/pinecone-generated-ts-fetch/index.js";
/**
*
* @param topK The number of results to return for each query.
*
* @param vector _(Conditionally Optional)_ The query vector. This should be the same length as the dimension
* of the index being queried.
* **Each query request can contain only one of the parameters "id" or "vector".**
*
* @param id _(Conditionally Optional)_ The unique ID of the vector to be used as a query vector.
* **Each query request can contain only one of the parameters "vector" or "id".**
*
* @param namespace _(Optional)_ The namespace to query.
*
* @param includeValues _(Optional)_ Indicates whether vector values are included in the response.
* Defaults to `false`.
*
* @param includeMetadata _(Optional)_ Indicates whether metadata is included in the response as well as the ids.
* Defaults to `false`.
*
* @param filter _(Optional)_ The filter to apply. You can use vector metadata to limit your search.
* See https://www.pinecone.io/docs/metadata-filtering/.
*/
type Pinecone = {
apiKey: string;
environment: string;
};
export async function main(
auth: Pinecone,
index_name: string,
topK: number,
vector?: number[],
id?: string,
namespace?: string,
include_values?: boolean,
include_metadata?: boolean,
filter?: object,
raw?: boolean,
) {
const client = new PineconeClient();
await client.init(auth);
const index = client.Index(index_name);
const queryRequest: QueryOperationRequest = removeObjectEmptyFields({
topK,
vector,
id,
namespace,
includeValues: include_values,
includeMetadata: include_metadata,
filter
});
return await index[raw ? "queryRaw" : "query"]({ queryRequest });
}
Submitted by admin 524 days ago
import { Resource } from "https://deno.land/x/windmill@v1.88.1/mod.ts";
import { removeObjectEmptyFields } from "https://deno.land/x/windmill_helpers@v1.1.1/mod.ts";
import { PineconeClient } from "npm:@pinecone-database/pinecone";
import { QueryOperationRequest } from "npm:@pinecone-database/pinecone/0.0.12/dist/pinecone-generated-ts-fetch/index.js";
/**
*
* @param topK The number of results to return for each query.
*
* @param vector _(Conditionally Optional)_ The query vector. This should be the same length as the dimension
* of the index being queried.
* **Each query request can contain only one of the parameters "id" or "vector".**
*
* @param id _(Conditionally Optional)_ The unique ID of the vector to be used as a query vector.
* **Each query request can contain only one of the parameters "vector" or "id".**
*
* @param namespace _(Optional)_ The namespace to query.
*
* @param includeValues _(Optional)_ Indicates whether vector values are included in the response.
* Defaults to `false`.
*
* @param includeMetadata _(Optional)_ Indicates whether metadata is included in the response as well as the ids.
* Defaults to `false`.
*
* @param filter _(Optional)_ The filter to apply. You can use vector metadata to limit your search.
* See https://www.pinecone.io/docs/metadata-filtering/.
*/
export async function main(
auth: Resource<"pinecone">,
index_name: string,
topK: number,
vector?: number[],
id?: string,
namespace?: string,
include_values?: boolean,
include_metadata?: boolean,
filter?: object,
raw?: boolean,
) {
const client = new PineconeClient();
await client.init(auth);
const index = client.Index(index_name);
const queryRequest: QueryOperationRequest = removeObjectEmptyFields({
topK,
vector,
id,
namespace,
includeValues: include_values,
includeMetadata: include_metadata,
filter
});
return await index[raw ? "queryRaw" : "query"]({ queryRequest });
}
Submitted by adam186 639 days ago