# Import necessary libraries
import torch
import torch.nn as nn
from typing import List
# Define a simple RNN model for time series prediction
class RNNModel(nn.Module):
def __init__(
self, input_size: int, hidden_size: int, output_size: int, num_layers: int
):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# Initialize hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
# Forward propagate RNN
out, _ = self.rnn(x, h0)
# Pass the output of the last time step to the classifier
out = self.fc(out[:, -1, :])
return out
def main(
data: List[float], num_epochs: int = 100, learning_rate: float = 0.01
) -> List[float]:
"""
Perform time series prediction using an RNN model.
Parameters:
- data: List[float], the time series data for training.
- num_epochs: int, the number of epochs to train the model.
- learning_rate: float, the learning rate for the optimizer.
Returns:
- predictions: List[float], the predicted values for the time series.
"""
# Convert data to PyTorch tensors
data_normalized = torch.FloatTensor(data).view(-1)
# Define the model
input_size = 1
hidden_size = 64
output_size = 1
num_layers = 1
model = RNNModel(input_size, hidden_size, output_size, num_layers)
# Loss and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for epoch in range(num_epochs):
for i in range(len(data_normalized) - 1):
# Prepare data
sequence = data_normalized[i : i + 1].view(-1, 1, 1)
target = data_normalized[i + 1].view(-1)
# Forward pass
output = model(sequence)
loss = criterion(output.view(-1), target)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")
# Predict (Here we use the last part of the data as a simple example)
test_data = data_normalized[-1:].view(-1, 1, 1)
with torch.no_grad():
predictions = model(test_data).view(-1).tolist()
return predictions
Submitted by henri186 280 days ago